1. 首页 > 中央空调

中央空调系统工作原理图解,中央空调系统原理

中央空调系统在现代企业和生活环境改善中非常普遍,在一些生活环境或生产过程中是必不可少的,即所谓的人工环境不仅仅是对温度的要求,还有对湿度和洁净度的要求。因此,需要中央空调系统来提高产品质量,提高人们的舒适度,具有高效的集中供冷供热,方便管理,节省投资等原因。正因如此,企业、高层商厦、商务楼、会议场所、影剧院、办公室、图书馆、宾馆、商场、超市、酒店、赌场、健身房等几乎所有大中型建筑都采用中央空调。是现代大型建筑不可缺少的配套设施之一,有电能。

因为中央空调系统是按照最大负荷和一定的裕度来设计的,实际上一年中,满负荷下的最大运行时间只有十几天,甚至十几个小时,几乎大部分时间负荷都在70%以下。通常中央空调系统中制冷主机的负荷可以随着季节温度的变化自动调节负荷,而与之配套的制冷泵和冷却泵却不能自动调节负荷,几乎长期在100%负荷下运行,造成能源的极大浪费,恶化了中央空调的运行环境和质量。

随着变频技术的日益成熟,由变频器、PLC、数模转换模块、温度传感器、温度模块有机结合形成温差闭环自动控制系统,可以自动调节水泵的输出流量。变频调速技术不仅能使室温保持在理想的状态,使人感到舒适和满足,而且能使整个系统平稳运行。更重要的是,其节能效果可达30%以上,能带来良好的经济效益。

中央空调系统的组成及工作原理

1.制冷机组:到各房间的循环水通过制冷机组进行“内部热交换”,使冷冻水冷却到5~7。并通过循环水系统向各空调点提供外部热交换源。内部热交换产生的热量通过冷却水系统排放到冷却塔内的空气中。内部换热系统是中央空调的“制冷源”。

2.冷冻水塔:用于为制冷机组提供“冷却水”。

3.“外部热交换”系统:由两个循环水系统组成;

(1)冷冻水循环系统由冷冻泵和冷冻管道组成。从冷冻机组流出的冷冻水被冷冻泵加压后送入冷冻水管道,在每个房间内进行热交换,带走房间内的热量,降低房间内的温度。

冷却水循环系统由冷却泵、冷却水管道和冷却塔组成。制冷机组进行热交换使水温降低,同时会释放大量热量,这些热量会被冷却水吸收,使冷却水温度升高。冷却泵将加热的冷却水压入水塔,与冷却塔内的大气进行热交换。然后,冷却后的冷却水会被送回制冷机组,如此循环,带走制冷机组释放的热量。

4.冷却风扇

(1)室内风机:安装在所有需要降温的房间,用于将经冷冻水冷却的冷空气吹入室内,加速室内的热交换;

(2)冷却塔风机用于降低冷却塔内的水温,加速“回水”带回大气的热量。

中央空调系统的所有四个部分都可以进行改造以节省电力。但冷冻水机组和冷却水机组改造后节能效果最好。本文将重点介绍冷冻水机组和冷却水机组的变频调速技术改造。

说明二次冷却风机变频调速的技术改造。

中央空调变频系统具体改造方案

现在,变频节能改造方案

1.1改造前集团中央空调系统主要设备及控制方式:两台450吨冷空调主机,型号为特灵二极离心机,两台并联运行;两台冷冻水泵,扬程28m,功率45KW,两台冷冻水泵,扬程35m,功率75KW。它们都以两用一备模式运行。两个冷却塔,11KW风扇电机,并联运行。四台室内风机,5.5KW,并联运行。

1.2原系统运行情况及存在问题:本集团为合资企业。为了给员工创造一个良好的工作环境,大部分办公楼都是全封闭的,公司大部分空间自然通风效果不好,所以夏季对空调质量的要求较高。所以除了部分节假日,其他时间中央空调都是全开的。因为中央空调系统必须按照最热的天气和最大负荷来设计,设计余量大概在10%-20%。其中制冷机可以根据负荷变化进行加负荷或减负荷,而冷冻水泵和冷却水泵不能根据负荷变化进行相应的调节。这样,冷冻水和冷却水系统几乎长时间处于大流量、小温差的状态下运行,造成能源的极大浪费。而且冷冻冷却水泵采用Y-启动方式,电机启动电流为其额定电流的3-4倍。在如此大的电流冲击下,接触器的使用寿命大大降低;同时,启动时的机械冲击和停泵时的水锤现象容易造成机械装置、轴承、阀门和管道的损坏,从而增加维修工作量、维修费用和设备老化。此外,由于冷冻泵轴输送的冷量无法跟随系统实际负荷的变化,其热力工况的平衡只能通过手动调节冷冻主机出水温度和大流量小温差来覆盖。这不仅浪费能源,而且恶化了系统的运行环境和质量。特别是在环境温度较低的情况下,一些末端设备的温度控制稍有失灵或灵敏度不高,就会造成大面积空调的室温寒冷不适,严重干扰中央空调系统的运行质量。因为空调冷,员工经常抱怨。处理这些投诉造成了人力资源的大量浪费。

根据实际情况,我们向团长提出:由变频器、人机界面、PLC、数模转换模块、温度模块、温度传感器组成的温差闭环自动调速系统。对冷冻水泵和冷却水泵进行改造,以节约电能,稳定系统,延长使用时间。

设备寿命。

  2.中央空调系统节能改造的具体方案

  2.1该中央空调节能系统具体装机清单如表二:

  2.2介绍变频节电原理:

  变频节能原理:由流体传输设备(水泵、风机)的工作原理可知:水泵、风机的流量(风量)与其转速成正比;水泵、风机的压力(扬程)与其转速的平方成正比,而水泵、风机的轴功率等于流量与压力的乘积,故水泵、风机的轴功率与其转速的三次方成正比(即与电源频率的三次方成正比)。变频器节能的效果是十分显著的,这种节能回报是看到见的。特别是调节范围大、启动电流大的系统及设备,通过图三可以直观的看出在流量变化时只要对转速(频率)稍作改变就会使水泵轴功率有更大程度上的改变,就因此特点使得变频调速装置成为一种趋势,而且不断深入并应用于各行各业的调速领域。

  根据上述原理可知:改变水泵、风机的转速就可改变水泵、风机的输出功率。

  2.3介绍系统电路设计和控制方式

  根据中央空调系统冷却水系统的一般装机,建议在冷却水系统和冷冻水系统各装两套传动之星SD-YP系列一体化变频调速控制柜,其中冷却变频调速控制柜供两台冷却水泵切换(循环)使用,冷冻变频调速控制柜供两台冷冻水泵切换(循环)使用。变频节能调速系统是在保留原工频系统的基础上加装改装的,变频节能系统的联动控制功能与原工频系统的联动控制功能相同,变频节能系统与原工频系统之间设置了联锁保护,以确保系统工作安全。利用变频器、人机界面、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量,为了达到节能目的提供了可靠的技术条件。如图四所示:

  1.系统主电路的控制设计

  根据具体情况,同时考虑到成本控制,原有的电器设备尽可能的利用。冷冻水泵及冷却水泵均采用一用一备的方式运行,因备用泵转换时间与空调主机转换时间一致,均为一个月转换一次,切换频率不高,决定将冷冻水泵和冷却水泵电机的主备切换控制利用原有电器设备,通过接触器、启停按钮、转换开关进行电气和机械互锁。确保每台水泵只能由一台变频器拖动,避免两台变频器同时拖动同一台水泵造成交流短路事故;并且每台变频器任何时间只能拖动一台水泵,以免一台变频器同时拖动两台水泵而过载。

  2.系统功能控制方式

  上位机监控系统主要通过人机界面完成对工艺参数的检测、各机组的协调控制以及数据的处理、分析等任务,下位机PLC主要完成数据采集,现场设备的控制及连锁等功能。具体工作流程:开机:开启冷水及冷却水泵,由PLC控制冷水及冷却水泵的启停,由冷水及冷却水泵的接触器向制冷机发出联锁信号,开启制冷机,由变频器、温度传感器、温度模块组成的温差闭环控制电路对水泵进行调速以控制工作流量,同时PLC控制冷却塔根据温度传感器信号自动选择开启台数。当过滤网前后压差超出设定值时,PLC发出过滤堵塞报警信号。送风机转速的快慢是由回风温度与系统设定值相比较后,用PID方式控制变频器,从而调节风机的转速,达到调节回风温度的目的。停机:关闭制冷机,冷水及冷却水泵以及冷却塔延时十五分钟后自动关闭。保护:由压力传感器控制冷水及冷却水的缺水保护,压力偏低时自动开启补水泵补水。

  2.4介绍系统节能改造原理

  1、对冷冻泵进行变频改造控制原理说明如下:PLC控制器通过温度模块及温度传感器将冷冻机的回水温度和出水温度读入控制器内存,并计算出温差值;然后根据冷冻机的回水与出水的温差值来控制变频器的转速,调节出水的流量,控制热交换的速度;温差大,说明室内温度高系统负荷大,应提高冷冻泵的转速,加快冷冻水的循环速度和流量,加快热交换的速度;反之温差小,则说明室内温度低,系统负荷小,可降低冷冻泵的转速,减缓冷冻水的循环速度和流量,减缓热交换的速度以节约电能;

  2、对冷却泵进行变频改造由于冷冻机组运行时,其冷凝器的热交换量是由冷却水带到冷却塔散热降温,再由冷却泵送到冷凝器进行不断循环的。

  冷却水进水出水温差大,说明冷冻机负荷大,需冷却水带走的热量大,应提高冷却泵的转速,加大冷却水的循环量;温差小,则说明,冷冻机负荷小,需带走的热量小,可降低冷却泵的转速,减小冷却水的循环量,以节约电能。

  3、冷却塔风机变频控制通过检测冷却塔水温度对冷却塔风机进行变频调速闭环控制,使冷却塔水温度恒定在设定温度,可以有效地节省风机的电能额外损耗,能达到最佳节电效果。

  4、室内风机组变频控制通过检测冷房温度对变风机组的风机进行变频调速闭环控制,实现冷房温度恒定在设定温度。室内风机组变频控制后可达到理想的节电效果,并且空调效果较佳。

  2.5系统流量、压力保障

  本方案的调节方式采用闭环自动调节控制,冷却水泵系统和冷冻水泵系统的调节方式基本相同,用温度传感器对冷却(冷冻)水在主机上的出口水温进行采样,转换成电量信号后送至温控器将该信号与设定值进行比较运算后输出一类比信号(一般为4—20MA、0—10V等)给PLC,由PLC、数模转换模块、温度传感器、温度模块进行温差闭环控制,手动/自动切换和手动频率上升、下降由PLC控制,最后把数据传关到上位机人机界面实行监视控制。变频器根据PLC发出的类比信号决定其输出频率,以达到改变水泵转速并调节流量的目的。

  冷却(冷冻)水系统的变频节能系统在实际使用中要考虑水泵的转速与扬程的平方成正比的关系,以及水泵的转速与管损平方成正比的关系;在水泵的扬程随转速的降低而降低的同时管道损失也在降低,因此,系统对水泵扬程的实际需求一样要降低;而通过设定变频器下限频率的方法又可保证系统对水泵扬程的最低需求。供水压力的稳定和调节量可以通过PID参数的调整。当供水需求量减少时,管道压力逐渐升高,内部PID调节器输出频率降低,当变频器输出频率低至0HZ时,而管道在一设定时间内还高于设定压力,变频器切断当前变频控制泵,转而控制下一个原工频控制泵,变频器在水泵控制转换过程中,逐渐轮换使用水泵,使每个水泵的利用率均等,增加系统、管道压力的稳定性和可靠性。

  中央空调系统进行变频改造的优点

  变频节能改造后除了可以节省大量的电能外还具有以下优点:

  (1)、电机起动是软起动,电流从OA到额定电流变化,减小了大电流对电机的冲击;

  (2)、电机软起动转速从0开始缓慢升速,可以有效减少水泵或风机的机械磨损;

  (3)、变频器是高性能的电力电子设备,具有较强的电机保护功能,能延长系统的各部件使用寿命;

  (4)、使室温维持恒定,让人感到舒适;

  (5)、经过改造后,可以使系统具有较高的可靠性,减少了环境噪音,减少了维修维护工作量。

  传动之星SD-YP系列一体化变频器的优点

  1.采用独特的空间矢量(SVPWM)调制方式;

  2.操作简单,具有键盘锁定功能,防止误操作;

  3.内置PID功能,可接受多种给定、反遗信号;

  4.具有节电、市电和停止三位锁定开关,便于转换及管理;

  5.保护功能完善,可远程控制;

  6.超静音优化设计,降低电机噪声;

  7.安装比较方便,不用破坏原有的配电设施及环境;

  8.稳定整个系统的正常运行,抗干扰能力强;

  9.具有过载、过压、过流、欠压、电源缺相等自动保护功能及声光报警功能。

本文采摘于网络,不代表本站立场,转载联系作者并注明出处:http://www.9iwh.cn/zykt/202210/62854.html